Training Object Class Detectors from Eye Tracking Data
نویسندگان
چکیده
Training an object class detector typically requires a large set of images annotated with bounding-boxes, which is expensive and time consuming to create. We propose novel approach to annotate object locations which can substantially reduce annotation time. We first track the eye movements of annotators instructed to find the object and then propose a technique for deriving object bounding-boxes from these fixations. To validate our idea, we collected eye tracking data for the trainval part of 10 object classes of Pascal VOC 2012 (6,270 images, 5 observers). Our technique correctly produces bounding-boxes in 50% of the images, while reducing the total annotation time by factor 6.8× compared to drawing bounding-boxes. Any standard object class detector can be trained on the bounding-boxes predicted by our model. Our large scale eye tracking dataset is available at groups.inf.ed.ac.uk/calvin/eyetrackdataset/.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملMulti-View Priors for Learning Detectors from Sparse Viewpoint Data
While the majority of today’s object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we a...
متن کاملLearning a Family of Detectors
Object detection and recognition are important problems in computer vision. The challenges of these problems come from the presence of noise, background clutter, large within class variations of the object class and limited training data. In addition, the computational complexity in the recognition process is also a concern in practice. In this thesis, we propose one approach to handle the prob...
متن کامل3D Cascade of Classifiers for Open and Closed Eye Detection in Driver Distraction Monitoring
Precise eye status detection and localization is a fundamental step for driver distraction detection. The efficiency of any learning-based object detection method highly depends on the training dataset as well as learning parameters. The reported research develops optimum values of Haar-training parameters to create a nested cascade of classifiers for real-time eye status detection. The detecto...
متن کاملEye-Tracking Method’ Usage for Understanding the Cognitive Processes in Multimedia Learning
Introduction: Designing multimedia learning environments should consist of the evidence-based study and principals about the human learning process. Eye tracking is a way based on the learner processing of learning materials which presented in multimedia learning environments. The aim of the study was to examine the use of the eye-tracking method to investigate the cognitive processes in m...
متن کامل